首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61372篇
  免费   7029篇
  国内免费   4283篇
电工技术   4470篇
技术理论   5篇
综合类   6135篇
化学工业   8702篇
金属工艺   4213篇
机械仪表   4012篇
建筑科学   4590篇
矿业工程   2333篇
能源动力   1663篇
轻工业   6964篇
水利工程   1694篇
石油天然气   2710篇
武器工业   762篇
无线电   6816篇
一般工业技术   5701篇
冶金工业   2579篇
原子能技术   960篇
自动化技术   8375篇
  2024年   206篇
  2023年   1074篇
  2022年   2418篇
  2021年   3168篇
  2020年   2319篇
  2019年   1754篇
  2018年   1941篇
  2017年   1929篇
  2016年   1787篇
  2015年   2786篇
  2014年   3392篇
  2013年   4052篇
  2012年   4828篇
  2011年   4883篇
  2010年   4548篇
  2009年   4358篇
  2008年   4470篇
  2007年   4150篇
  2006年   3576篇
  2005年   2876篇
  2004年   2173篇
  2003年   1916篇
  2002年   2086篇
  2001年   1753篇
  2000年   1259篇
  1999年   810篇
  1998年   382篇
  1997年   347篇
  1996年   309篇
  1995年   249篇
  1994年   193篇
  1993年   150篇
  1992年   116篇
  1991年   86篇
  1990年   82篇
  1989年   62篇
  1988年   38篇
  1987年   22篇
  1986年   26篇
  1985年   8篇
  1984年   6篇
  1983年   11篇
  1982年   5篇
  1981年   10篇
  1980年   22篇
  1979年   7篇
  1959年   27篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
A column experiment was conducted to investigate the effect of phosphogypsum (PG) on the saline- alkalinity, and aggregate stability of bauxite residue. Results showed that: with increasing leaching time, the concentrations of saline-alkali ions decreased while the concentration increased in bauxite residue leachate; compared with CK (control group) treatment, pH, electric conductivity (EC), exchangeable sodium percentage (ESP), sodium absorption ratio (SAR), and exchangeable Na+ content of bauxite residue were reduced following PG treatment; average particle sizes in aggregates following CK and PG treatments were determined to be 155 and 193 nm, respectively. SR-μCT test results also confirmed that bauxite residue following PG treatment acquired larger aggregates and larger pore diameter. These results indicate that the PG treatment could significantly modulate the saline-alkalinity, and simultaneously enhance aggregate stability of bauxite residue, which provides a facile approach to reclaim bauxite residue disposal areas.  相似文献   
2.
It is urgently necessary to seek more simple and effective methods to construct superhydrophobic metal surfaces to improve the corrosion resistance and antifouling performance. Herein, a facile method for fabricating superhydrophobic aluminum alloy surface is developed via boiling water treatment and stearic acid modification. It is noteworthy that no prepolishing on aluminum alloy is required and no caustic reagents and typical equipments are used during the preparation procedure. Therefore, the fabrication method is quite a simple and environment-friendly technique. Both micro- and nano-scaled binary structure forms at the resultant aluminum alloy surface while long alkyl chains are grafted onto the rough aluminum alloy surface chemically. Consequently, the resultant aluminum alloy exhibits outstanding superhydrophobicity. More importantly, the superhydrophobicity has excellent universality, diversity, stability, excellent corrosion resistance, and antifouling performance. The facile preparation, excellent superhydrophobic durability, and outstanding performance are quite in favor of the practical application.  相似文献   
3.
结合全球倡导的营养导向型农业和功能性食品的内容,首次提出“功能性小麦品种”的概念,将其定义为“含有对人体健康有益的活性成分,可调节人体有益代谢,能给人体健康带来某种益处或满足特定人群的特殊需求,同时可以作为日常食物的口感正常、无毒副作用的小麦品种类型”;结合疫情警示和我国进入后工业时代后,人们需求必将由“吃得饱”、“吃得好”向“吃得健康”转变,因而提出继高产品种、优质品种之后培育“功能性小麦品种”的育种目标。根据多年关于小麦淀粉、蛋白、酯类和其他成分的功能研究结果,介绍新育成的“麦黄酮”、“高色素”、“高抗性淀粉”、“富锌”、“低醇溶蛋白”和“低植酸”等功能性小麦新品种(系)的营养特性和农艺产量状况;根据“健康中国2030”规划等国家战略,进行“功能性品种培育是解决我国功能性食品‘卡脖子’的关键基础,一种功能性品种可以形成一类功能性食品,多种功能性品种可以形成我国功能性面制品产业,推动我国整个食品工业的发展”的前景展望;根据功能性品种及其食品的稳定性和可靠性是产品和市场的“生命线”,从对消费者负责的高度,提出关于“功能性农作物品种审定导向和组建功能性成分检测机构;编制有关功能性品种和食品的国家或行业标准,设立功能性食品和功能性农作物品种的商业标志,保证我国功能性农作物品种及其食品健康发展”等方面的具体建议。  相似文献   
4.
The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.  相似文献   
5.
Succinic acid is an important synthetic monomer but it is difficult to use it as a precursor for synthesizing high molecular weight polyamide, due to its tendency to perform intra-cyclization reaction at high temperature. In order to solve this problem, in this paper, the direct solid-state polymerization (DSSP) method with the initial reactant, nylon salt which was composed of 1, 5-diaminopentane, succinic acid, and terephthalic acid, was applied to synthesize the bio-based copolyamide PA 5T/54. In comparison with the conventional melting polymerization method, the DSSP method can prevent the cyclization reaction of succinic acid effectively due to the lower reacting temperature as well as the restriction effect of the nylon salt. As a result, the product fabricated by DSSP method has higher molecular weight and much lighter color from red to white. Therefore, the DSSP method is advantageous for the synthesis of the polymers or copolymers composed of the succinic acid as the monomer. Furthermore, the polymerization mechanism proposed in this work can serve as a guidance for the design of the molecular structure and control of the polymerization process.  相似文献   
6.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
7.
8.
In order to enhance the photocatalytic activity of TiO2 under visible light, Ag nanoparticles were introduced into tridoped B–C–N–TiO2 (TT) catalyst by photoreduction deposition. Ag/B–C–N–TiO2 (ATT) catalysts with the functions of reducing band gap and carrier recombination were prepared. At the same time, the effect of the amount of Ag on the photocatalytic performance of ATT catalyst was investigated. Through XRD, XPS, PL and other characterization methods, the (211)/(101)/Ag interface heterojunction mechanism similar to the traditional Z-scheme heterojunction was proposed. The intervention of Ag nanoparticles changed the P–N interface heterojunction between (211)/(101) to the (211)/(101)/Ag Z-scheme interface heterojunction. The results show that ATT catalyst exhibits the highest photocatalytic activity when the molar amount of Ag is 0.005% with the MB degradation rate of the ATT catalyst (0.01707 min?1), which is 14.59 times of TiO2 (0.00117 min?1) and 2.02 times of TT (0.00847 min?1). In addition, the four cycles efficiencies of ATT for MB degradation were all above 94.00%.This study reveals the possibility of construction of Z-scheme heterojunctions between precious metal nanoparticles and different interfaces of TiO2, and provides a reference for the construction of Z-scheme interface heterojunctions.  相似文献   
9.
Bone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D-printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on-demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.  相似文献   
10.
The development of the Internet of things has prompted an exponential increase in the demand for flexible, wearable devices, thereby posing new challenges to their integration and conformalization. Additive manufacturing facilitates the fabrication of complex parts via a single integrated process. Herein, the development of a multinozzle, multimaterial printing device is reported. This device accommodates the various characteristics of printing materials, ensures high-capacity printing, and can accommodate a wide range of material viscosities from 0 to 1000 Cp. Complete capacitors, inclusive of the current collector, electrode, and electrolyte, can be printed without repeated clamping to complete the preheating, printing, and sintering processes. This method addresses the poor stability issue associated with printed electrode materials. Furthermore, after the intercalation of LiFePO4 with Na ions, X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the Na ions permeate the interlayer structure of LiFePO4, enhancing the ion migration channels by increasing the ion transmission rate. A current rate of 2.5 mAh ensures >2000 charge/discharge cycles, while retaining a charge/discharge efficiency of 96% and a discharge capacity of 91.3 mAh g−1. This manufacturing process can provide conformal power modules for a diverse range of portable devices with various shapes, improving space utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号